Как называется одна из прямоугольных координат


Положение любой точки P в пространстве (в частности, на плоскости) может быть определено при помощи той или иной системы координат. Числа, определяющие положение точки, называются координатами этой точки.

Наиболее употребительные координатные системы - декартовы прямоугольные.

Кроме прямоугольных систем координат существуют косоугольные системы. Т.к. я не встречал примеров применения косоугольных систем, то я их не рассматриваю. Прямоугольные и косоугольные координатные системы объединяются под названием декартовых систем координат.

Иногда на плоскости применяют полярные системы координат, а в пространстве - цилиндрические или сферические системы координат.

Обобщением всех перечисленных систем координат являются криволинейные системы координат.

Рис. 1. Классификация систем координат


Криволинейные системы координат

В двухмерном пространстве задаются два семейства линий (координатных линий), зависящих каждое от одного параметра, причем через каждую точку проходит только по одной линии каждого семейства. Значения параметров, соответствующие этим кривым, являются криволинейными координатами этой точки.

В трехмерном пространстве задаются три семейства координатных поверхностей. таких, что через каждую точку проходит по одной поверхности каждого семейства.

Положение точки в такой системе определяется значениями параметров координатных поверхностей, проходящих через эту точку.


Декартовы прямоугольные системы координат

Для задания декартовой прямоугольной системы координат нужно выбрать несколько взаимноперпендикулярных прямых, называемых осями. Точка пересечения осей O называется началом координат.

На каждой оси нужно задать положительное направление и выбрать единицу масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.

Декартовыми прямоугольными координатами точки P на плоскости называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до двух взаимно перпендикулярных прямых - осей координат или, что то же, проекции радиус-вектора r точки P на две взаимно перпендикулярные координатные оси.

Когда говорят про двухмерную систему коодинат, горизонтальную ось называют осью абсцисс (осью Ox), вертикальную ось - осью ординат (осью Оy). Положительные направления выбирают на оси Ox - вправо, на оси Oy - вверх. Координаты x и y называются соответственно абсциссой и ординатой точки.

Запись P(a,b) означает, что точка P на плоскости имеет абсциссу a и ординату b.

Декартовыми прямоугольными координатами точки P в трехмерном пространстве называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до трех взаимно перпендикулярных координатных плоскостей или, что то же, проекции радиус-вектора r точки P на три взаимно перпендикулярные координатные оси.

В зависимости от взаимного расположения положительных направлений координатных осей возможны левая и правая координатные системы.

Рис.

. Левые координатные системы

Рис. 3б. Правые координатные системы

Как правило, пользуются правой координатной системой. Положительные направления выбирают: на оси Ox - на наблюдателя; на оси Oy - вправо; на оси Oz - вверх. Координаты x, y, z называются соответственно абсциссой, ординатой и аппликатой.

Координатными поверхностями, для которых одна из координат остается постоянной, здесь являются плоскости, параллельные координатным плоскостям, а координатными линиями, вдоль которых меняется только одна координата, - прямые, параллельные координатным осям. Координатные поверхности пересекаются по координатным линиям.

Запись P(a,b,c) означает, что точка Q имеет абсциссу a, ординату b и аппликату c.


Полярные системы координат



алгоритм, построение, создание, написание, исходник, программа, определение, метод, вычисление, поиск, нахождение, реализация, описание, математика, геометрия, вычислительная, вычисление, оптимальный,, cистема координат, координаты, счема, преобразование, перевод, формула, декартова, полярная, сферическая, цилиндрическая, описание, прямоугольная:Математика. Вычислительная геометрия. Системы координат.

как называется одна из прямоугольных координат